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Abstract

In this note, we consider the parabolic Anderson model on R+ × R, driven by a
Gaussian noise which is fractional in time with index H0 > 1/2 and fractional in space
with index 0 < H < 1/2 such that H0 +H > 3/4. Under a general condition on the
initial data, we prove the existence and uniqueness of the mild solution and obtain its
exponential upper bounds in time for all p-th moments with p ≥ 2.
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1 Introduction

In this paper, we study the parabolic Anderson model (PAM):
∂u

∂t
(t, x) =

1

2

∂u

∂x2
(t, x) + u(t, x)Ẇ (t, x) t > 0, x ∈ R,

u(0, ·) = µ0,
(1.1)

with initial condition given by a non-negative Borel measure µ0 on R such that∫
R

e−ax
2

µ0(dx) <∞ for all a > 0. (1.2)

Initial conditions of this type (called rough initial conditions) were introduced in [4]
and were considered later for the stochastic heat equation in various settings; see,
e.g., [2, 5, 6] and references therein. The noise Ẇ is assumed to be a centered Gaussian
noise that is fractional in time and space with indices H0, respectively H in the following
range (see the gray area in Figure 1.1):

(H0, H) ∈ (1/2, 1)× (0, 1/2) and H +H0 > 3/4. (1.3)
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PAM with rough noise and rough initial data
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Figure 1.1: The gray area – Area II – corresponds to the range of H0 and H in which the
noise Ẇ is rough in space. Area I corresponds to the case when the noise is non rough.

Rigorously, {W (ϕ);ϕ ∈ D(R+×R)} is a zero-mean Gaussian process with covariance1:

E[W (ϕ)W (ψ)] = αH0

∫
R2

+

∫
R

|t− s|2H0−2Fϕ(t, ·)(ξ)Fψ(s, ·)(ξ)µ(dξ)dtds =: 〈ϕ,ψ〉H,

where αH0
= H0(2H0 − 1) and µ(dξ) = cH |ξ|1−2Hdξ, with cH = Γ(2H + 1) sin(πH)/(2π).

Since H < 1/2, we say that W is rough in space.
We denote by H the completion of D(R+ × R) with respect to the inner product

〈·, ·〉H. Then W = {W (ϕ)}ϕ∈H is an isonormal Gaussian process and we can use Malliavin
calculus to define and analyze the solution to (1.1). We say that a process u = {u(t, x); t >

0, x ∈ R} is a Skorohod solution of (1.1) if it is adapted with respect to the filtration
induced by W , and for all t > 0 and x ∈ R,

u(t, x) = J0(t, x) +

∫ t

0

∫
R

G(t− s, x− y)u(s, y)W (δs, δy), (1.4)

where J0 is the solution to the homogeneous heat equation, i.e.,

J0(t, x) :=

∫
R

G(t, x− y)µ0(dy) with G(t, x) = (2πt)−1/2e−
x2

2t . (1.5)

The stochastic integral in (1.4) is interpreted in the Skorohod sense, i.e. it is given
by the divergence operator from Malliavin calculus. We refer the reader to Section 1.3
of [12] for the definition of this operator, and to [2, 10, 9] for similar developments.

The following theorem is the main result of the present article.

Theorem 1.1. If (H0, H) satisfy (1.3) and if µ0 satisfies (1.2), then equation (1.1) has a
unique solution u and this solution satisfies: for all p ≥ 2, t > 0 and x ∈ R,

E (|u(t, x)|p) ≤ Cp1J
p
0 (t, x) exp

(
C2p

H+1
H t

2H0+H−1
H

)
, (1.6)

where C1 > 0 and C2 > 0 are some constants which depend on H0 and H.

The novelty of our result is the fact that we consider rough initial condition. One
prominent example is the case µ0 = δ0 where δ0 is the Dirac delta measure; see, e.g., [1].

Remark 1.2. When the initial condition is a bounded function or a constant, X. Chen
established, in Theorem 1.2 of [7], the well-posedness of the solution to (1.1) in Lp(Ω)

under conditions (1.3). Note that recently, Z.-Q. Chen and Y. Hu identified, in part (ii) of

1In this note, we denote by Fϕ =
∫
Rd

e−iξ·xϕ(x)dx the Fourier transform of a function ϕ ∈ L1(Rd).
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PAM with rough noise and rough initial data

Theorem 1.3 of [8], the following necessary condition for the well-posedness of (1.1), in
the case when (H0, H) ∈ (1/2, 1)× (0, 1/2) and µ0(dx) = u0(x)dx with u0(x) ≥ c > 0:

H + 2H0 > 5/4.

In the present paper, we extend X. Chen’s work to the rough initial condition case. This
extension is highly nontrivial. As we will see in the proof of Theorem 1.1 below, to
estimate the moments of the solution, we need to compute a spatial integral and a time
integral. In [7], X. Chen uses the Laplace transform to handle the time integral first and
then computes the spatial integral. This method does not work for the rough initial data.
In a nutshell, moving from bounded initial data to rough initial data, one essentially
changes the underlying motion from the Brownian motion to the Brownian bridge. The
time increments no longer take the linear difference form; see Lemma 2.1. To overcome
this difficulty, we compute the spatial integral first and then use Lemma A.1 to compute
the time integral. This leads to a complicated expression which contains a product γn of
ratios of gamma functions; see (2.9). The most delicate part is to estimate γn. For this,
we develop some novel combinatorial techniques. Unlike [7, 8] where (1.1) in Rd was
studied, in this note, we only study on the one-spatial-dimensional case.

Recently, Hu and Lê obtained in Theorem 3.2 of [10] both the well-posedness and the
following moment asymptotics: 2

E (|u(t, x)|p) ≤ Cp1 t−p(β+
2H−1

4 ) exp
(
C2p

H+1
H t

2H0+H−1
H

)
, for all p ≥ 2, t > 0, x ∈ R, (1.7)

under weaker conditions on µ0, namely, µ0 is a Borel measure such that∫
R

(
1 + |ξ|−(H−1/2)

)
e−t|ξ|

2

|Fµ0(ξ)|dξ ≤ Ct−β for all t > 0, (1.8)

for some C > 0 and β < H0, where Fµ0 is the Fourier transform of µ0. Condition (1.8) is
more restrictive than (1.2); see Remark 1.3 for one example. While our exponent in (1.6)
recovers that of Hu and Lê in (1.7), the factor Jp0 (t, x) in (1.6) looks more natural than
the corresponding factor in (1.7). For example, when the initial condition is a bounded
function (resp. the delta initial measure), then as t→ 0, the factor Jp0 (t, x) will not blow
up (resp. blows up at the exact rate t−d/2 for x = 0 and will not blow up for x 6= 0). But
it is not clear whether the factor t−p(β+(2H−1)/4) in (1.7) would blow up or not, which
depends on the sign of the exponent of t.

Remark 1.3. Our condition on the initial data allows growing tails, for example, µ(dx) =

x2dx. In this case,
∫
R
e−ax

2

x2dx =
√
π 2−1a−3/2 <∞ for all a > 0. Hence, condition (1.2)

is satisfied. But this initial condition cannot satisfy condition (1.8) because F [x2](ξ) =

δ′′(ξ) (in the generalized sense, see, e.g., Theorem 7.4 of [14]), which is a genuine
distribution and hence does not have module or absolute value.

Finally, this paper can also be viewed as a continuation of [2] where the case of rough
initial conditions and (H0, H) ∈ (1/2, 1)2 (see Figure 1.1) was covered.

2 Proof of Theorem 1.1

We denote by In : H⊗n → H the multiple Wiener integral of order n with respect to
W . It is known that the solution u exists if and only if

∑
n≥1 In(fn(·, t, x)) converges in

2This is relation (3.6) of [10] with α0 = 2− 2H0 and α = 2H − 1; see also Remark 3.5 (ii) ibid.
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PAM with rough noise and rough initial data

L2(Ω), and in this case the solution has the Wiener chaos expansion:

u(t, x) = J0(t, x) +
∑
n≥1

In(fn(·, t, x)) with

fn(t1, x1, . . . , tn, xn, t, x) =

n∏
j=1

G(tj+1 − tj , xj+1 − xj)J0(t1, x1)1{0<t1<...<tn<t},

and tn+1 = t and xn+1 = x; see for instance [2, 9]. By the orthogonality of the terms in
this series, the necessary and sufficient condition for the existence of solution is:∑

n≥1

n!‖f̃n(·, t, x)‖2H⊗n <∞, (2.1)

where f̃n(·, t, x) is the symmetrization of fn(·, t, x), defined by:

f̃n(t1, x1, . . . , tn, xn, t, x) =
1

n!

∑
ρ∈Sn

fn(tρ(1), xρ(1), . . . , tρ(n), xρ(n), t, x),

where Sn is the set of permutations of {1, . . . , n}. For any t = (t1, . . . , tn) ∈ [0, t]n,
s = (s1, . . . , sn) ∈ [0, t]n, we denote

ψ
(n)
t,x (t, s) = (n!)2

∫
Rd
µ(dξ1) . . . µ(dξn) F f̃n(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

×F f̃n(s1, ·, . . . , sn, ·, t, x)(ξ1, . . . , ξn).

We will use the following result.

Lemma 2.1 (Lemma 3.2 of [2]). If 0 < tρ(1) < . . . < tρ(n) < t =: tρ(n+1), then

ψ
(n)
t,x (t, s) ≤ J2

0 (t, x)

∫
Rn

n∏
k=1

exp

− tρ(k+1) − tρ(k)
tρ(k+1)tρ(k)

∣∣∣∣∣∣
k∑
j=1

tρ(j)ξj

∣∣∣∣∣∣
2
µ(dξ1) . . . µ(dξn).

We will also use the following estimate, which is a consequence of Hölder’s inequality
with p = 1/H, and the Littlewood-Hardy-Sobolev inequality (see, e.g., [11]):

αnH0

∫
R2n

+

n∏
j=1

|tj − sj |2H0−2ϕ(t)ϕ(s)dtds ≤ bnH0

(∫
Rn+

|ϕ(t)|1/H0dt

)2H0

. (2.2)

Lemma 2.2. For n ≥ 2 and x1, . . . , xn ∈ R+, it holds that

Sn := x1

n∏
k=2

(xk + xk−1) =
∑
a∈An

n∏
j=1

x
aj
j , (2.3)

where An is a set of indices a = (a1, . . . , an) such that card(An) = 2n−1 and

a1 ∈ {1, 2}, an ∈ {0, 1}, a2, . . . , an−1 ∈ {0, 1, 2}, (2.4a)

i∑
j=1

aj ∈ {i, i+ 1} for i = 1, · · · , n− 1,
n∑
j=1

aj = n, (2.4b)

ai + ai+1 ∈ {1, 2, 3} for i = 2, . . . , n− 2, (2.4c)

a1 + a2 ∈ {2, 3} and an−1 + an ∈ {1, 2}. (2.4d)
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Figure 2.2: The eight paths for n = 4, from (1, 1) to either (4, 3) or (4, 4), correspond
to the eight monomials in the expansion of S4 = x1(x1 + x2)(x2 + x3)(x3 + x4). All
paths should stay in the dashed envelope. The four digits correspond to the value of
(a1, . . . , a4).

An expansion similar to Lemma 2.2 can be found in [9, p. 488]. Our result is
slightly more precise. For example, instead of a1, an ∈ {0, 1, 2}, we have a1 ∈ {1, 2} and
an ∈ {0, 1}.

Proof of Lemma 2.2. Clearly it holds for n = 2. Assume that the statement is true for
n ≥ 2. Then

Sn+1 = Sn(xn + xn+1) =
∑
a∈An

n∏
i=1

xaii x
an+1
n +

∑
a∈An

n∏
i=1

xaii xn+1 =:
∑

a′∈An+1

n+1∏
i=1

x
a′i
i .

The statement for n+1 follows by considering separately two cases: (i) a′1 = a1, . . . , a
′
n−1 =

an−1, a
′
n = an + 1, a′n+1 = 0; and (ii) a′1 = a1, . . . , , a

′
n = an, a

′
n+1 = 1.

Remark 2.3. Lemma 2.2 can also be proved using a path representation. Since this
representation will be used in the proof of Theorem 1.1, we explain it here. To each
monomial xa11 . . . xann in the expansion of Sn one can associate a path starting from (1, 1)

and going to (n, n) or (n, n − 1), depending on whether xn is present or absent in the
monomial. This path is composed of n − 1 segments, which correspond to exponents
a1, . . . , an−1 (in this order) and are constructed as follows:

-if the exponent is 0, the path moves 1 unit to the right and 2 units up;
-if the exponent is 1, the path moves 1 unit to the right and 1 unit up;
-if the exponent is 2, the path moves 1 unit to the right and 0 units up.
See Figure 2.2 for an illustration of this correspondence with n = 4. See also

Figure 2.3 for the properties in (2.4).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Denote Jn(t, x) = In(fn(·, t, x)). Let C be a constant which de-
pends on H0 and H and may be different from line to line. The proof consists of five
steps:
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Figure 2.3: Illustrations of properties in (2.4) with n = 7. Each monomial in the expansion
of (2.3) corresponds to a path from (1, 1) to either (7, 7) or (7, 6). The dots indicate the
possible choices for the position of the path.

Step 1. Note that ψ(n)
t,x (t, s) ≤ ψ(n)

t,x (t, t)1/2ψ(n)
t,x (s, s)1/2 by the Cauchy-Schwarz inequality.

Combining this with inequality (2.2), we obtain:

E
(
|Jn(t, x)|2

)
= n!‖f̃n(·, t, x)‖2H⊗n =

1

n!
αnH0

∫
[0,t]2n

n∏
j=1

|tj − sj |2H0−2ψ
(n)
t,x (t, s)dtds

≤ 1

n!
bnH0

∑
ρ∈Sn

∫
0<tρ(1)<...<tρ(n)<t

ψ
(n)
t,x (t, t)

1
2H0 dt

2H0

. (2.5)

By Lemma 2.1, for any ρ ∈ Sn fixed, we have:∫
0<tρ(1)<...<tρ(n)<t

ψ
(n)
t,x (t, t)

1
2H0 dt ≤ J1/H0

0 (t, x)

∫
0<tρ(1)<...<tρ(n)<t

dt

×

∫
Rn

n∏
k=1

exp

− tρ(k+1) − tρ(k)
tρ(k+1)tρ(k)

∣∣∣∣∣∣
k∑
j=1

tρ(j)ξj

∣∣∣∣∣∣
2
µ(dξ1) . . . µ(dξn)


1

2H0

.

Using the change of variables t′k = tρ(k) for k = 1, . . . , n, we see that the integral on the
right-hand side above does not depend on ρ. Hence,∫

0<tρ(1)<...<tρ(n)<t

ψ
(n)
t,x (t, t)

1
2H0 dt ≤ J1/H0

0 (t, x)

∫
{0<t1<...<tn<t}

I
(n)
t (t1, . . . , tn)

1
2H0 dt,

where

I
(n)
t (t1, . . . , tn) =

∫
Rn

n∏
k=1

exp

− tk+1 − tk
tk+1tk

∣∣∣∣∣∣
k∑
j=1

tjξj

∣∣∣∣∣∣
2
µ(dξ1) . . . µ(dξn)
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and tn+1 = t. Taking the sum over all ρ ∈ Sn and coming back to (2.5), we obtain:

E
(
|Jn(t, x)|2

)
≤ J2

0 (t, x)bnH0
(n!)2H0−1

(∫
{0<t1<...<tn<t}

I
(n)
t (t1, . . . , tn)

1
2H0 dt

)2H0

. (2.6)

This inequality is similar to Lemma 3.3 of [2].

Step 2. We now estimate I(n)t (t1, . . . , tn). We use the change of variables zj = tjξj for

j = 1, . . . , n, followed by ηk =
∑k
j=1 zj for k = 1, . . . , n. We obtain:

I
(n)
t (t1, . . . , tn) = cnH

(
n∏
i=1

ti

)2H−2 ∫
Rn

d~z

n∏
k=1

exp

− tk+1 − tk
tk+1tk

∣∣∣∣∣∣
k∑
j=1

zj

∣∣∣∣∣∣
2
 |zk|1−2H

= cnH

(
n∏
i=1

ti

)2H−2 ∫
Rn

d~η

(
n∏
k=1

exp

{
− tk+1 − tk

tk+1tk
|ηk|2

})
|η1|1−2H

n∏
k=2

|ηk − ηk−1|1−2H

≤ cnH

(
n∏
i=1

ti

)2H−2∫
Rn

d~η

(
n∏
k=1

exp

{
− tk+1−tk

tk+1tk
|ηk|2

})
|η1|1−2H

n∏
k=2

(
|ηk|1−2H |+|ηk−1|1−2H

)
,

where d~z = dz1 . . . dzn and similarly d~η = dη1 . . . dηn.
By Lemma 2.2 (see also Remark 2.3 and Figure 2.2 for more explanations),

|η1|1−2H
n∏
k=2

(|ηk|1−2H |+ |ηk−1|1−2H) =
∑
a∈An

n∏
j=1

|ηj |(1−2H)aj =
∑
α∈Dn

n∏
j=1

|ηj |αj ,

where Dn is the set of all multi-indices α = (α1, . . . , αn) with αj = (1 − 2H)aj for all
j = 1, . . . , n, and a = (a1, . . . , an) ∈ An. Therefore,

I
(n)
t (t1, . . . , tn) ≤ cnH

 n∏
j=1

tj

2H−2 ∑
α∈Dn

n∏
j=1

{∫
R

exp
(
− tj+1 − tj

tj+1tj
|ηj |2

)
|ηj |αjdηj

}
.

Each of the integrals above can be computed explicitly. By Lemma 3.1 of [3],∫
R

e−t|ξ|
2

|ξ|αdξ = Γ

(
1 + α

2

)
t−

1+α
2 for any t > 0 and α > −1.

Hence,

I
(n)
t (t1, . . . , tn) ≤ Cn

 n∏
j=1

tj

2H−2 ∑
α∈Dn

n∏
j=1

(
tj+1 − tj
tjtj+1

)− 1+αj
2

= Cn
∑
α∈Dn

t
4H−3+α1

2
1

 n∏
j=2

t
4H−2+αj−1+αj

2
j

 t
αn+1

2

n∏
j=1

(tj+1 − tj)−
αj+1

2 .

Step 3. Taking power 1/(2H0) and returning to (2.6), we obtain:

Jn(t, x) ≤ J2
0 (t, x)Cn(n!)2H0−1

( ∑
α∈Dn

t
αn+1
4H0

∫
{0<t1<...<tn<t}

n∏
i=1

tα̃ii (ti+1 − ti)β̃idt

)2H0

(2.7)
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PAM with rough noise and rough initial data

where

α̃j =


4H − 3 + α1

4H0
j = 1,

4H − 2 + αj−1 + αj
4H0

j = 2, . . . , n,
and β̃j = −αj + 1

4H0
, j = 1, . . . , n.

Now we verify that the conditions of Lemma A.1 hold for the integrals in (2.7). Clearly,
α̃1 > −1. When αj = 2(1− 2H), condition β̃j > −1 becomes H +H0 > 3/4; see (1.3). Now
we verify that

k∑
i=1

(α̃i + β̃i) + k + 1 + αk+1 > 0 for all k = 1, . . . , n− 1, (2.8)

using induction on k. For k = 1, using again the condition H0 +H > 3/4, we see that

α̃1 + β̃1 + α̃2 + 2 =
8H0 + 8H − 6 + α1 + α2

4H0
> 0.

Suppose that (2.8) holds for k − 1. We write

k∑
i=1

(α̃i + β̃i) + k + 1 + αk+1 =

(
k−1∑
i=1

(α̃i + β̃i) + α̃k + k

)
+
(
αk+1 + β̃k + 1

)
,

and we notice that αk+1 + β̃k + 1 = (4H0 + 4H − 3 + αk+1)/(4H0) > 0. Therefore, we can
apply Lemma A.1 to see that∫

{0<t1<...<tn<t}

n∏
i=1

tα̃ii (ti+1 − ti)β̃idt =
Γ (α̃1 + 1)

∏n
i=1 Γ(β̃i + 1)

Γ
(
|α̃|+ |β̃|+ n+ 1

) γnt
|α̃|+|β̃|+n,

with γn :=

n−1∏
k=1

Γ
(∑k

i=1(α̃i + β̃i) + k + 1 + α̃k+1

)
Γ
(∑k

i=1(α̃i + β̃i) + k + 1
) .

(2.9)

Step 4. In this step, we will show that γn ≤ 1. Note that

α̃1 + β̃1 =
H − 1

H0
and α̃k + β̃k =

4H − 3 + αk−1
4H0

, k = 2, . . . , n.

Denote θk :=
∑k
i=1(α̃i + β̃i) + k + 1. Hence,

θk =


H − 1

H0
+ 2 if k = 1,

1− 1

4H0
+ k

4H0 + 4H − 3

4H0
+

1− 2H

4H0

k−1∑
i=1

ai if k = 2, . . . , n.
(2.10)

Note that

θk − θk−1 =
4H0 + 4H − 3

4H0
+

1− 2H

4H0
ak−1, for k = 2, · · · , n. (2.11)

We see that γn is a function of ai:

γn(a1, . . . , an) =

n−1∏
k=1

Γ
(
θk + 1−2H

4H0
(ak + ak+1 − 2)

)
Γ (θk)

.

Recall that any choice of ai corresponds to a path as shown in Figure 2.3. We claim that

when we move the path downwards, the value of γn decreases. (2.12)
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xi−1

xi xi

xi+1
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i− 1
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0

−1

1

0

(a′k + a′k+1)− (ak + ak+1)

0

−1

0

1

θ′k − θk

0

1− 2H

4H0

0

0

k

i+ 2

i+ 1

i

i− 1

xi−1

xi xi

xi+1

xi+1

xi+2

Case II

i i+ 1 i+ 2

i

i+ 1

i+ 2

i− 1
xi−1

xi xi

xi+1

xi+1

xi+2

Case III

i i+ 1 i+ 2

i

i+ 1

i+ 2

i− 1
xi−1

xi xi

xi+1

xi+1

xi+2

Case IV

i i+ 1 i+ 2

i

i+ 1

i+ 2

i− 1

Figure 2.4: Four cases for the positions of the paths (a1, . . . , an) and (a′1, . . . , a
′
n) around

point (i+ 1, i+ 1). The values of a′k − ak, (a′k + a′k+1)− (ak + ak+1), and θ′k − θk are the
same for all four cases.

As a consequence, the path that achieves the maximum for γn is the one going through
(i, i) for i = 1, . . . , n, i.e., the straight diagonal line — the topmost line. In this case, we
have all ai are equal to one and hence ai + ai+1 = 2 for all i = 1, . . . , n− 1. Therefore,

γn(a1, . . . , an) ≤ γ(1, . . . , 1) = 1. (2.13)

It remains to prove the claim (2.12). Note that all paths stay between the diagonal
and the line parallel to the diagonal, one unit down. If the path does not touch the
diagonal, then no action is taken (the argument below will show that the value of γn is
minimal for this path).

Let (a1, . . . , an) ∈ An be a path which touches the diagonal on at least one point. Say
this point is (i + 1, i + 1) with i + 1 < n. (The case i + 1 = n is similar.) We compare
the value γn(a1, . . . , an) with the value γn(a′1, . . . , a

′
n) corresponding to another path

(a′1, . . . , a
′
n) ∈ An which is obtained by moving the point (i+ 1, i+ 1) 1 unit down. There

are 4 possible cases for the shapes of the two paths around the point (i+ 1, i+ 1), which
are illustrated in Figure 2.4. Since ak gives the number of points that the path (a1, . . . , an)

has on line k, it follows that in all 4 cases, a′i = ai + 1 (since line i received one point),
a′i+1 = ai+1 − 1 (since line i+ 1 lost one point) and a′k = ak for all k 6∈ {i, i+ 1} (since the
rest of the path remains unchanged). Hence,

(a′k + a′k+1)− (ak + ak+1) =


1 if k = i− 1

−1 if k = i+ 1

0 otherwise

and θ′k − θk =

{
1−2H
4H0

if k = i+ 1

0 otherwise
.
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By direct calculation, we see that

θ′i−1 +
1− 2H

4H0
(a′i−1 + a′i − 2) = θi−1 +

1− 2H

4H0
(ai−1 + ai − 2) +

1− 2H

4H0
and

θ′k +
1− 2H

4H0
(a′k + a′k+1 − 2) = θk +

1− 2H

4H0
(ak + ak+1 − 2) for all k 6= i− 1.

Therefore,

γ (a′1, · · · , a′n)

γ (a1, · · · , an)
=

n−1∏
k=1

Γ(θ′k + 1−2H
4H0

(a′k + a′k+1 − 2))

Γ(θk + 1−2H
4H0

(ak + ak+1 − 2))
×
n−1∏
k=1

Γ(θk)

Γ(θ′k)

=
Γ
(
θi−1 + 1−2H

4H0
(ai−1 + ai − 2) + 1−2H

4H0

)
Γ
(
θi−1 + 1−2H

4H0
(ai−1 + ai − 2)

) × Γ(θi+1)

Γ
(
θi+1 + 1−2H

4H0

) .
By applying Lemma A.2, we see that the above ratio is always less than or equal to

one. For this, we need to check that

z1 := θi−1 +
1− 2H

4H0
(ai−1 + ai − 2) ≤ z2 := θi+1.

This is clear, since by (2.11), θi+1 = θi−1 + 2 4H0+4H−3
4H0

+ 1−2H
4H0

(ai−1 + ai − 2). Here we
use again condition (1.3). This proves the claim in (2.12).

Step 5. We claim that for n large enough,

Γ
(
|α̃|+ |β̃|+ n+ 1

)
≥ Cn(n!)

2H0+H−1
2H0 . (2.14)

Indeed, by (2.10),

|α̃|+ |β̃|+ n+ 1 = n
2H0 +H − 1

2H0
− 1 + αn

4H0
+ 1 ≥ n2H0 +H − 1

2H0
− 1−H

2H0
+ 1.

We use the fact that for any a > 0, b ∈ R, there exists Na,b ∈ N depending on a and b

such that Γ(an+ 1 + b) ≥ Cna,b(n!)a for all n ≥ Na,b. Since Γ is increasing on (2,∞), we
see that (2.14) holds true. Therefore, thanks to (2.14), we see that for n large enough,

∫
{0<t1<...<tn<t}

n∏
i=1

tα̃ii (ti+1 − ti)β̃idt ≤ Cn(n!)−
2H0+H−1

2H0 tn
2H0+H−1

2H0
− 1+αn

4H0 .

Returning to (2.7), it follows that E
(
|Jn(t, x)|2

)
≤ J2

0 (t, x)Cn(n!)−Htn(2H0+H−1). Finally,
by hypercontractivity, the ‖ · ‖p-norm on Lp(Ω) is equivalent to the ‖ · ‖2-norm (see e.g.
page 62 of [12]), and hence

‖u(t, x)‖p ≤
∑
n≥0

(p− 1)n/2‖Jn(t, x)‖2 ≤ J0(t, x)
∑
n≥0

(p− 1)n/2Cn/2
1

(n!)H/2
tn

2H0+H−1
2

≤ C exp
(
Cp1/Ht

2H0+H−1
H

)
,

where for the last line we used the fact that
∑
n≥0

xn

(n!)a ≤ C exp(cx1/a) for any x > 0 and
a > 0. We conclude the proof of Theorem 1.1 by taking power p.
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A Some auxiliary results

Lemma A.1. Suppose that α1 > −1, βi > −1 for any i = 1, . . . , n, and

k∑
i=1

(αi + βi) + k + 1 + αk+1 > 0 for all k = 1, . . . , n− 1. (A.1)

Then by setting tn+1 = t, |α| =
∑n
i=1 αi and |β| =

∑n
i=1 βi, we have that

In(t, α1, . . . , αn, β1, . . . , βn) :=

∫
{0<t1<...<tn<t}

n∏
i=1

tαii (ti+1 − ti)βidt

=
Γ(α1 + 1)

∏n
i=1 Γ(βi + 1)

Γ
(
|α|+ |β|+ n+ 1

) n−1∏
k=1

Γ
(∑k

i=1(αi + βi) + k + 1 + αk+1

)
Γ
(∑k

i=1(αi + βi) + k + 1
) t|α|+|β|+n. (A.2)

Proof. The lemma is proved by induction. For n = 1, we have:

I1(t, α, β) =

∫ t

0

tα1
1 (t− t1)β1dt1 =

Γ(α1 + 1)Γ(β1 + 1)

Γ(α1 + β1 + 2)
tα1+β1+1.

For the induction step, we use the fact that

In(t, α1, . . . , αn, β1, . . . , βn) =

∫ t

0

tαnn (t− tn)βnIn−1(tn, α1, . . . , αn−1, β1, . . . , βn−1)dtn.

This proves the lemma.

Lemma A.2. For any a > 0, the function z 7→ Γ(z + a)/Γ(z) is non-decreasing on (0,∞).

Proof. Let f(z) = Γ(z + a)/Γ(z). Note that f ′(z) = f(z) (ψ(z + a)− ψ(z)), where ψ(z) :=

Γ′(z)/Γ(z) is the psi function; see 5.2.2 on p. 136 of [13]. By the following expression

ψ(z) = −γ +
∑
k≥1

(
1

k + 1
− 1

k + z

)
for any z > 0,

with γ = limn→∞(
∑n
k=1 k

−1 − lnn) ≈ 0.5772 being the Euler’s constant (see, e.g., 5.7.6
on p. 139 ibid.), we see that ψ is a nondecreasing function on (0,∞). Hence, f ′(z) ≥ 0

for all z > 0, which implies the desired result.
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